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ABSTRACT

Many noncoding RNAs are known to play a role in the cell directly linked to their structure. Structure prediction based on
the sole sequence is, however, a challenging task. On the other hand, thanks to the low cost of sequencing technologies, a
very large number of homologous sequences are becoming available for many RNA families. In the protein community, the
idea of exploiting the covariance of mutations within a family to predict the protein structure using the direct-coupling-
analysis (DCA) method has emerged in the last decade. The application of DCA to RNA systems has been limited so far.
We here perform an assessment of the DCA method on 17 riboswitch families, comparing it with the commonly used mu-
tual information analysis and with state-of-the-art R-scape covariance method. We also compare different flavors of DCA,
including mean-field, pseudolikelihood, and a proposed stochastic procedure (Boltzmann learning) for solving exactly the
DCA inverse problem. Boltzmann learning outperforms the other methods in predicting contacts observed in high-reso-
lution crystal structures.
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INTRODUCTION

The number of noncoding RNAs with a known functional
role has steadily increased in the last years (Morris and
Mattick 2014; Hon et al. 2017). For a large fraction of
them, their function has been suggested to be directly re-
lated to their structure (Smith et al. 2013). For paradigmatic
cases such as ribozymes (Doherty and Doudna 2000), that
catalyze chemical reactions, and riboswitches (Serganov
and Nudler 2013), whose aptamer domain has evolved
in order to specifically bind physiological metabolites, a
well-defined three-dimensional structure is required for
function. Secondary structure can be inferred using ther-
modynamic models (Mathews et al. 2016), often used in
combination with chemical probing data (Weeks 2010).
Tertiary structure is usually determined using more com-
plex techniques based on nuclear magnetic resonance
(Rinnenthal et al. 2011) or X-ray diffraction (Westhof
2015). Predicting RNA tertiary structure from sequence
alone is still very difficult (Miao et al. 2017; Šponer et al.
2018), and best performances are nowadays obtained us-
ing secondary structure prediction followed by simulations
with knowledge-based potentials (Miao et al. 2017). The
low cost of sequencing techniques, however, lead to the

accumulation of a vast number of sequence data for
many homologous RNA families (Nawrocki et al. 2014).
Covariance of aligned homologous sequences has been
traditionally used to help or validate three-dimensional
structural modeling (see, e.g., Michel and Westhof 1990;
Costa and Michel 1997 for early examples). Systematic ap-
proaches based on mutual information analysis (Eddy and
Durbin 1994) and related methods (Pang et al. 2005) are
now routinely used to construct covariance models and
score putative contacts. Recently, a G-test-based statistical
procedure called R-scape has been shown to be more ro-
bust than plain mutual information analysis for predicting
contacts in RNA alignments with gaps (Rivas et al. 2017).
In the last years, in the protein community it has emerged
the idea of using so-called direct coupling analysis (DCA)
in order to construct a probabilistic model capable to gen-
erate the correlations observed in the analyzed sequences
(Marks et al. 2011; Morcos et al. 2011; Nguyen et al. 2017;
Cocco et al. 2018): strong direct couplings in the model in-
dicate spatial proximity. The solution of the corresponding
inverse model is usually found in the so-called mean-field
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approximation (Morcos et al. 2011), that is strongly
correlated with the sparse inverse covariance approach
(Jones et al. 2011). A further improvement in the level of
approximation of the inferred solution is reached when
maximizing the conditional likelihood (or pseudolikeli-
hood), which is a consistent estimator of the full likelihood
but involves a tractable maximization (Ekeberg et al. 2013)
and is considered as the state-of-the-art method for pro-
tein sequences.

Whereas covariance methods have been applied to
RNA systems since a long time, the application of DCA
to RNA structure prediction has so far been limited. The
coevolution of bases in RNA fragments with known struc-
ture has been investigated (Dutheil et al. 2010), observing
strong correlations in Watson–Crick (WC) pairs and much
weaker correlations in non-WC pairs. DCA has been first
applied to RNA in two pioneering works, using either the
mean-field approximation (De Leonardis et al. 2015) or a
pseudolikelihood maximization (Weinreb et al. 2016). A
later work also used the mean-field approximation to infer
contacts (Wang et al. 2017). Thementioned applications of
DCA to RNA structure prediction focused on the predic-
tion of RNA three-dimensional structure based on the
combination of DCA with some underlying coarse-grain
model (De Leonardis et al. 2015; Weinreb et al. 2016;
Wang et al. 2017). However, the performance of the
DCA alone is difficult to assess from these works, since
the reported results likely depend on the accuracy of the
utilized coarse-grain models. In addition, within the DCA
procedure there are a number of subtle arbitrary choices
that might significantly affect the result, including the
choice of a suitable sequence-alignment algorithm and
the identification of the correct threshold for contact pre-
diction. The limited number of systematic tests performed
on RNA sequences and, in particular, the lack of an explicit
analysis of the dependence of the results on the chosen
parameters makes a careful benchmark particularly urgent.

In this paper, we report a systematic analysis of the per-
formance of DCA methods for 17 riboswitch families cho-
sen among those for which at least one high-resolution
crystallographic structure is available. Riboswitches were
chosen since they are ubiquitous in bacteria and thus
show a significant degree of sequence heterogeneity with-
in each family, but further tests were done on nonribos-
witch families, including nonbacterial ones. A stochastic
procedure based on Boltzmann learning for solving exactly
the DCA inverse problem is introduced and compared
with the mean-field solution and the pseudolikelihood
maximization approach, as well as with mutual information
and R-scape method. A rigorous cross-validation proce-
dure that allows to find a portable threshold to identify pre-
dicted contacts is also introduced. Whereas Boltzmann
learning is usually considered as a numerically unfeasible
procedure in DCA, we here show that it can be effectively
used to infer parameters that reproduce correctly the stat-

istical properties of the analyzed alignments and that cor-
relate with experimental contacts better than those
predicted using alternative approximations.

RESULTS

We here report an extensive assessment of the capability
of covariance-based methods to infer contacts in RNA sys-
tems. In particular, we focus on direct-coupling-analysis
(DCA) methods, which require the coupling constants of
a Potts model that reproduces empirical covariations to
be estimated. We thus first assess the capability of differ-
ent methods to infer correct couplings. We then compare
the high-score contacts with those observed in high-reso-
lution crystallographic structures in order to assess the ca-
pability of these methods to enhance RNA structure
prediction.

Themajority of the results presented in the main text are
obtained using the Infernal MSA, and equivalent results
obtained using ClustalW alignments are presented in
Supplemental Information, Figures 6–11. Similarly, the ef-
fect of not applying the average-product correction (APC)
is reported in Supplemental Information, Table 4.

Capability of the inferred couplings to reproduce
frequencies

As a first step, we compared the absolute capability of the
discussed methods to infer a Potts model compatible with
the frequencies observed in the MSA. As shown in Figure
1, the Boltzmann learning procedure is capable to infer a
Potts model that generates sequences with the correct fre-
quencies. The two displayed families are those where the
model frequencies agree best (PDB: 3F2Q) or worst (PDB:
3OWI) with the empirical ones. For 3OWI there are still vis-
ible mismatches, whereas for 3F2Q the modeled and em-
pirical frequencies are virtually identical. On the other
hand, the couplings inferred using the pseudolikelihood
or the mean-field approximation do not reproduce cor-
rectly the empirical frequencies. This is expected, since
the mean-field approximation is not meant to be precise
but rather a quick method to compute an approximation
to the real couplings. Particularly striking is the case of
the pseudolikelihood for 3OWI, where there is no appar-
ent correlation between the modeled and the empirical
frequencies.

In Figure 2 we report the root mean-square deviation
(RMSD) between the empirical and model frequencies
for all the investigated families. The learning parameters
for the Boltzmann learning simulation were chosen in order
to minimize the RMSD value reported here (α=0.01, τS=
1000). A negative control is performed comparing empiri-
cal frequencies with the ones calculated on random se-
quences ( fij=1/25), and a positive control computing the
statistical error due to finite size of the alignment, in order
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to set a reference for RMSD values. In addition, we com-
pare the empirical frequencies with those calculated on
the 20 MSA sequences initializing the parallelized
Boltzmann learning simulation. This guarantees that the
frequencies are rather resulting from a correct choice of
the coupling parameters than statistics resulting from the
initial sequences. For all families, the resulting RMSD ob-
tained with the Boltzmann learning couplings is lower
than the one obtained using the 20 sequences from the
MSA, indicating that the chosen couplings are shifting
the distribution toward the empirical one. In some cases
the RMSD reaches the statistical error expected with a fi-
nite number of sequences (positive control). Whereas
this is expected since the Boltzmann learning procedure
is exaclty trained to reproduce these frequencies, it is not
obvious that this result can be achieved in a feasible com-
putational time scale. On the contrary, both the pseudoli-
kelihood and mean-field approximation present an RMSD
systematically larger than the one obtained with 20 se-
quences from the MSA. This indicates that the couplings
inferred using these approximated methods are not lead-
ing to a Potts model that reproduces the experimental
frequencies.
We notice that the adopted pseudolikelihood imple-

mentation employs a regularization term in order to im-
prove predictions when the number of sequences is low.

This term is usually tuned in order to
improve the rank of true contacts
and not the frequencies reported
here. We thus tested parameters ob-
tained using a lower regularization
term obtaining similar results
(Supplemental Information, Figure
12). Given that pseudolikelihood is
known to converge to the exact value
in the limit of an infinite number of se-
quences (see, e.g., Arnold and Strauss
1991; Ravikumar et al. 2010), this dis-
crepancy should be attributed to the
typical size of the used alignments.
We also notice that in multiple cases
the frequencies obtained using cou-
plings inferred with pseudolikelihood
tend to be larger than the empirical
ones. Since the RMSD is highly sensi-
tive to large deviations, this can cause
some of the systems to be in less
agreement with natural sequences
than the employed negative control,
which instead consists by construction
of homogeneous frequencies. Quali-
tatively, the deviation observed here
is similar to the one reported for pro-
tein systems in (Figliuzzi et al. 2018).

FIGURE 1. FMN riboswitch (PDB code 3F2Q) and glycine riboswitch (PDB code 3OWI).
Comparison between modeled fij (σ, τ) and empirical Fij (σ, τ) frequencies ∀i,j,σ,τ, obtained
from DCA via Boltzmann learning, mean-field approximation, and pseudolikelihood
maximization.
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FIGURE 2. Capability of the inferred couplings to reproduce fre-
quencies using different methods (Boltzmann learning, pseudolikeli-
hood, and mean-field DCA). The validation is done running a
parallel MC simulation on 20 sequences and calculating the root-
mean-square deviation (RMSD) between the obtained frequencies
and the empirical ones. We report a positive control (statistical error
due to the finite number of sequence), a negative control (RMSD be-
tween empirical sequences and a random sequence), and the RMSD
from the ensemble of the 20 sequences used as a starting point of
Boltzmann learning simulations. Families are labeled using the PDB
code of the representative crystallographic structure. Average
RMSD is also reported.
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Validation of contact prediction

As we have seen so far, Boltzmann learning is the only pro-
cedure capable to infer correct couplings. However, this
does not necessarily imply that it is also the method capa-
ble of most correct contact predictions. Indeed, one can-
not give for granted that the exact parameters of the
Potts model are correlated with structural contacts. We
here validate the predictions against a set of crystallo-
graphic structures by computing the MCC between the
predicted and empirical contacts. The general approach
used to predict contacts fromDCA is to extract the residue
pairs with the highest couplings. Similarly, contacts can be
predicted choosing pairs with the highest mutual informa-
tion or the lowest E-value provided by R-scape. In order to
fairly choose the threshold we adopted a cross-validation
procedure: The MCC of each system is the one corre-
sponding to a score cutoff S maximizing the average
MCC (Supplemental Eq. S14), calculated excluding that
system. The choice of the threshold for covariance scores
of the different models can be generalized to an indepen-
dent data set, since the optimal threshold has a similar
value for all systems (Supplemental Information, Tables
2, 3). We also tested the more standard procedure of
choosing as predictions a given fraction of the length N
(Supplemental Information, Table 11). For R-scape we
used the recommended threshold corresponding to an
E-value equal to 0.05.

As a negative control we show the MCC obtained as-
suming randomly chosen scores. In this case, the precision
is equal to the number of native contacts (Nnative) over the
total number of possible contacts (N(N− 1)/2) irrespec-
tively of the chosen threshold, whereas the sensitivity is
maximized when the threshold is chosen such that all the
possible contacts are predicted and is equal to 1. The cor-
responding MCC is thus

���������������������
2Nnative/N(N − 1)

√
.

Results of the cross-validation procedure for each system
(Fig. 3) indicate that direct-coupling analysis outperforms
mutual information and R-scape, and in particular
Boltzmann learning performs themost accurate prediction.
In addition, the results on individual families show that the
choice of threshold covariance score is more consistent
for Boltzmann learning when compared to pseudolikeli-
hood DCA. In order to quantify this effect we introduce a

transferability index f = 1
Ns

∑Ns

m

MCCm/MCCmax
m , which is

the ratio between the cross-validated MCC for system
m(MCCm) described above and the maximum MCC that
can be obtained by choosing the optimal threshold for
each systemMCCmax

m , averaged over all systems. This value
amounts to ϕ=0.96 for BL and to ϕ=0.91 for pseudolikeli-
hood DCA, suggesting that for the latter case the accuracy
of contact prediction is more sensible to the choice of the
cutoff, which is less easily transferable between different

systems.Results formean fieldDCAandmutual information
are ϕ=0.95 and ϕ=0.92, respectively. Finally, we also com-
puted the cross-validatedMCC obtained with a thermody-
namic model applied to the sequence associated to each
crystallographic structure, by using as scoring the pairing
probabilities computed with ViennaRNA (Supplemental
Information, Table 8; Mathews et al. 2004; Lorenz et al.
2011). These results do not exploit the covariance informa-
tionandare thus instructive toassess its importance.Weno-
tice that all the DCA methods perform better than
thermodynamic models alone.

Influence of alignment method

We then used the two most accurate covariance methods
(Boltzmann learning and pseudolikelihood DCA) to assess
the influence of the alignment method. In particular, we
considered the MSA methods implemented in ClustalW
and Infernal packages. The average MCC over all
RNA families when varying threshold S is systematically
higher if sequences are aligned with Infernal rather than
ClustalW (Fig. 4). We attribute this improvement in the
quality of prediction performance to the use of consensus
secondary structure in Infernal (Nawrocki and Eddy 2013).
The discrepancy between the accuracies of contact predic-
tion using two different alignment methods enlightens the
necessity of efficient tools to improve covariance analysis
input quality. Interestingly, the threshold score S maximiz-
ing the MCC is the same for the Boltzmann learning
performed on the two different MSAs. This suggests
the robustness of the adopted procedure to assess
the optimal threshold score (Supplemental Eq. S14), again
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FIGURE 3. MCC of Boltzmann learningDCA, pseudolikelihoodDCA,
mean-field DCA, mutual information, and R-scape for 17 RNA families
at the threshold obtained through cross-validation procedure. The
recommended threshold 0.05 was used for R-scape. Families are la-
beled using the PDB code of the representative crystallographic struc-
ture. Average MCC is also reported. Alignments are performed with
Infernal.
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enlightening a greater consistency in its choice for the
Boltzmann learning with respect to pseudolikelihood max-
imization framework. Given its better performance, the
Infernal MSA method is used in the rest of the main text.

Precision and sensitivity

In order to better quantify the capability of the investigat-
ed methods to provide useful information about contacts,
we independently monitor sensitivity and precision for
each RNA family at cross-validation thresholds. The aver-
age sensitivity values are around 0.3–0.4, indicating that
approximately one third of the contacts present in the na-
tive structure can be predicted with these procedures
(Supplemental Information, Fig. 1). Qualitatively, it ap-
pears that correctly predicted contacts are scattered along
the sequences. The average precision instead ranges
between 0.7 and 0.9, indicating that the number of
falsely predicted contacts is rather small (Supplemental In-
formation, Fig. 2). The Boltzmann learning and pseudolike-
lihoodDCA report higher sensitivity and precision than the
other methods. R-scape presents a higher sensitivity when
compared with mutual information and a similar precision.
We notice that R-scape results reported here are obtained
using the recommended threshold (E-value <0.05). Results
obtained choosing the E-value that maximizes the MCC
are reported in Supplemental Information, Tables 9, 10.
In order to assess the capability of these methods to probe
RNA tertiary structure we also report the sensitivity value
restricted to secondary contacts, obtained considering
only base pairs contained in stems, and the number of
true positive tertiary contacts, with results similar to those
reported above (Supplemental Information, Figs. 3, 4).

A contact is thus here considered as tertiary irrespectively
of which edges are shared between nucleobases, and
might even be an isolated WC pair. In general, DCA is
able to identify not only cWW (Leontis and Westhof
2001) pairs, where covariance is mostly associated to ca-
nonical pairs (GC, AU, and GU), but also a number of non-
canonical pairs (see Supplemental Information, Table 6).
When looking at the absolute number of incorrect predic-
tions the Boltzmann learning DCA provides the smallest
average number (Supplemental Information, Fig. 5). In par-
ticular, pseudolikelihood DCA reports a very large number
of false positives for a few systems. Also in this case, this is a
consequence of the poor transferability of the cutoff for
contact prediction in pseudolikelihood DCA. A more care-
ful eye on incorrect predictions reveals that ≈50% of false
positives predicted by all DCA methods are actually stack-
ing interactions not included in the true-positive list since
we only considered base-pairings in reference native struc-
tures (Supplemental Information, Table 7). In addition,
couplings in consecutive nucleotides might be affected
by a bias in the dinucleotide distribution.

Typical contact predictions

It is instructive to visualize which specific contacts are cor-
rectly predicted and which ones are not for individual sys-
tems.We first discuss the predictions on the systemswhere
Boltzmann learning and pseudolikelihood DCA result in
the highest MCC (glycine riboswitch, PDB 3OWI, and
SAM riboswitch, PDB 2GIS, respectively). In the glycine
riboswitch, Figure 5, we see that the two methods give
comparable results. All the four native stems are predicted,
although pseudolikelihood DCA predicts a slightly larger
number of correct pairs. Also a non-stem WC contact is
identified. In the SAM riboswitch, Figure 6, we see that
the pseudolikelihood DCA predicts a significantly larger
number of correct contacts. Notably, bothmethods are ca-
pable to identify contacts in a pseudoknotted helix be-
tween residues 25–28 and residues 68–65. These
examples show that in the best cases these methods allow
full helices to be identified accompanied by a small num-
ber of critical tertiary contacts. It is also useful to consider
the cases resulting in the lowest MCC (SAM-I/IV ribos-
witch, PDB 4L81, for Boltzmann learning and NiCo ribos-
witch, PDB 4RUM, for pseudolikelihood DCA). In the
SAM-I/IV riboswitch the two methods give comparable re-
sults, and only a limited number of secondary contacts are
correctly predicted (Fig. 7). The stem between position 10
and position 20 shows a number of false positives. In this
case, a helix with a register shifted by one nucleotide is
suggested by the both DCA predictions. In more detail,
we do not expect the alternative register to have a signifi-
cant population in solution, since it would be capped by a
AGAC tetraloop, whereas the reference crystal structure
displays a common GAGA tetraloop. We interpret both
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sets of false positives as errors in the MSA. Indeed, espe-
cially with sequences consisting of consecutive identical
nucleotides, one cannot assume the alignment procedure
to correctly place gaps in the MSA. As a consequence, the
reference structure for which the PDB is available might be
misaligned with the majority of the homologous sequenc-
es in the MSA, resulting in predicted contacts shifted by
one position upstream or downstream. Remarkably,
many WC pairs close to the binding site of the riboswitch
are predicted (G10/C21, G22/U50, and G23/C49; ligand
directly interacts with nucleotides C7, A25, and U47). In
the NiCo riboswitch, Figure 8, pseudolikelihood DCA

only predicts six correct helical contacts, whereas
Boltzmann learning DCA is capable to predict a number
of contacts in the helices, even though resulting in several
false positives. Figures 5–8 also report predictions done
with R-scape.

Validation on nonriboswitch systems

We further validated the whole procedure by considering
4 additional families including ribosomial RNA subunits,
transfer RNA (tRNA), and a purely eukaryotic spliceosomal
RNA. All the parameters of the Boltzmann learning

B CA

FIGURE 5. Glycine riboswitch (PDB code 3OWI) most accurate Boltzmann learning prediction (A) and respective pseudolikelihood prediction (B).
Correctly predicted contacts in secondary structure are shown in dark gray. Correctly predicted tertiary contacts are shown in light gray.We notice
that the G12/C28 pair is here labeled as tertiary since it corresponds to an isolated Watson–Crick pair in the reference structure. Prediction with
R-scape is shown in C.

B CA

FIGURE 6. SAM riboswitch (PDB code 2GIS), best accurate pseudolikelihood prediction (A), and respective Boltzmann learning prediction (B).
Correctly predicted contacts in secondary structure are shown in dark gray. Correctly predicted tertiary contacts are shown in light gray. False
positives are shown with dashed lines. Prediction with R-scape is shown in C.
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simulations were chosen identical to those used for the
riboswitch families. The threshold used to convert scores
into predictions was taken as 1.06, which is the one that
maximizes the MCC on the 17 riboswitch families. Results
are reported in Supplemental Information, Table 12 and
are slightly worse than those obtained for riboswitch fam-
ilies, with the exception of tRNA.

DISCUSSION

We here report a systematic assessment of RNA contact
prediction based on aligned homologous sequences us-
ing mutual information analysis, R-scape, and DCA.
When compared to previous works (De Leonardis et al.
2015; Weinreb et al. 2016; Wang et al. 2017), our analysis
focuses on the DCA calculation and does not convert the
resulting couplings into a structural model. The capability
of various DCA-basedmethods to reproduce empirical fre-
quencies from the MSA is evaluated. Native contacts in a
set of reference structures are carefully annotated and
compared with the predicted ones, in order to quantify
the fraction of correctly predicted contacts (precision)

and the fraction of predicted native contacts (sensitivity).
In particular, since coevolution in RNA is expected to be
related to isostericity (Leontis et al. 2002; Stombaugh
et al. 2009), we only considered base-pairing and exclud-
ed other base-backbone or backbone-backbone contacts.
Our results show that ∼40% of the total native contacts

can be predicted by this procedure. A large fraction of
the predicted contacts are secondary structure contacts
or pseudoknotted helices. However, in most of the ana-
lyzed structures, at least one tertiary contact is correctly
predicted. In addition, the number of false positives is
very small (≈10% of the predicted contacts). In many cases,
false positives are just labeled so by our decision to ex-
clude stacking interactions from the true contacts. In other
cases, false positives are a consequence of an erroneous
alignment of some of the sequences. Some false positives
are genuinely caused by numerical noises or by the as-
sumptions behind the Potts model. We notice that in prin-
ciple the detrimental effect of false positives on the
accuracy of structure prediction might be mitigated by us-
ing approaches where contacts that are not compatible
with the predicted structure are discarded iteratively

B CA

FIGURE 7. SAM-I/IV riboswitch (PDB code 4L81), least accurate Boltzmann learning prediction (A), and respective pseudolikelihood prediction
(B). Correctly predicted contacts in secondary structure are shown in dark gray. Correctly predicted tertiary contacts are shown in light gray. False
positives are shown with dashed lines. Prediction with R-scape is shown in C.

B CA

FIGURE 8. NiCo riboswitch (PDB code 4RUM), least accurate pseudolikelihood prediction (A), and respective Boltzmann learning prediction (B).
Correctly predicted contacts in secondary structure are shown in dark gray. Correctly predicted tertiary contacts are shown in light gray. False
positives are shown with dashed lines. Prediction with R-scape is shown in C.
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(Weinreb et al. 2016). As a general consideration, it must
be kept in mind that strong couplings as predicted by
DCA are a signature of coevolutionary pressure but not
necessarily of spatial proximity. For instance, functionally
related elements that are far from each other in space
might exhibit coevolution. Relationships of this kind could
in principle decrease the precision of the method in pre-
dicting contacts. In principle, highly conserved residues
carry a limited amount of information and could thus re-
duce the sensitivity of the method, although in practice
we never observed a very high conservation in the ana-
lyzed bacterial sequences. Eukariotic sequences might
be more sensible to this issue, as it can be seen by the low-
er performance of the method when applied to spliceoso-
mal RNA.

Importantly, we developed a rigorous manner to estab-
lish a threshold for contact prediction. In particular, once a
figure of merit capable to take into account both themeth-
od precision and sensitivity has been defined, an optimal
threshold can be found on a specific training set. We
here used the Mathews correlation coefficient, that corre-
sponds to the interaction network fidelity (Parisien et al.
2009) widely used in the RNA structure-prediction commu-
nity (Miao et al. 2017). The resulting thresholds are differ-
ent depending on the used method (mutual information
vs. the tested DCA methods), but are transferable across
different RNA families as illustrated by our cross-validation
analysis.

It is important to observe that RNA molecules often dis-
play dynamics (i.e., coexistence of multiple structures) re-
lated to function, and that perhaps riboswitches are the
paradigmatic example where multiple structures are re-
quired for function. For instance, some of the false posi-
tives might correspond to true contacts in an alternative,
biologically functional structure (e.g., on and off state of
the riboswitch). In addition, the alignment procedure itself
might be more difficult or even not well defined in highly
dynamic systems such as riboswitches. This fact might af-
fect the results of the comparison reported here.
Nevertheless, we believe that high resolution X-ray struc-
tures still represent the best proxy for the correct solution
structure and as such they should be used for a critical as-
sessment. Without having an experimentally determined
ensemble, it appears difficult to assume that the observed
false positives are, by chance, important contacts in alter-
native structures.

A crucial finding is that the here introduced stochastic
solution of the inverse problem (Boltzmann learning) is fea-
sible on these systems and outperforms the other DCA ap-
proaches. The resulting Potts models were shown to
reproduce correctly the empirical frequencies from the
MSA. Whereas the fact that the mean-field approach pro-
vides an approximate solution is well-known (Nguyen et al.
2017; Cocco et al. 2018), no such comparison has been re-
ported on RNA DCA yet. Importantly, the few parameters

required for the Boltzmann learning procedure can be
tuned bymonitoring the capability of themethod to repro-
duce the empirical frequencies. The only parameter that is
adjusted based on known structures is the threshold for
contact prediction, that is here chosen with a cross-valida-
tion analysis. In addition, we show that, although it is sup-
posed to be capable to infer correct couplings at least in
the limit of a large number of sequences, also the pseudo-
likelihood approximation is not capable to reproduce the
correct frequencies with the employed data sets. This
fact was recently observed for protein systems (Figliuzzi
et al. 2018), where it was also observed that in spite of
this disagreement the contact predictions obtained with
the pseudolikelihood approximation are of quality similar
to those obtained with Boltzmann learning DCA.

The overall improvement in the accuracy of the predic-
tions, as measured by the MCC, when passing from
state-of-the-art pseudolikelihoodDCA to Boltzmann learn-
ing DCA is due to the smaller number of false positives and
is comparable to the one observed when passing frommu-
tual information to mean-field DCA. Although the impact
of this improvement should be assessed in a real 3D struc-
ture prediction test, we notice that the difference between
mutual information and mean-field DCAwas shown to sig-
nificantly improve the quality of 3D structure prediction
in De Leonardis et al. (2015). It is worth saying that the
extra cost of the Boltzmann learning procedure is signifi-
cant if onewants to characterize a large number of families.
The required times for all the tested covariance methods
scale roughly as the number of nucleotides squared and
are listed in Table 1 for the largest and smallest molecules
in the data set. If we also include the cost of a later 3D
structure prediction and refinement, we consider the extra
cost of Boltzmann learning to be absolutely worth. We be-
lieve that the fast Boltzmann learning procedure intro-
duced here based on a stochastic gradient descent
could be fruitfully used in protein systems as well. We
also notice that the stochastic procedure used here is
closely related to similar techniques used in the molecular

TABLE 1. Computational time for the smallest and largest
system investigated

Method 3DOU (largest) 3VRS (smallest)

Boltzmann learning DCA 220 min 20 min

Pseudolikelihood DCA 3 min 30 sec
R-scape 33 sec 9 sec

Mean field DCA 22 sec 4 sec

Mutual information 15 sec 3 sec

Machine hardware architecture: Intel E5-2620, 12 physical cores. Operat-
ing system: GNU/Linux. Mutual information, MF-DCA, and BL-DCA pre-
dictions were done using in house code. R-scape predictions were done
using R-scape 1.2.3. PL-DCA were done using plmDCA_asymmetric_v2
code available on GitHub.
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dynamics community in order to enforce preassigned dis-
tributions in the generation of molecular structures
(Valsson and Parrinello 2014; White and Voth 2014;
Cesari et al. 2016, 2018). We chose here to use the sim-
plest possible optimization algorithm, but more advanced
procedures might make the Boltzmann learning approach
even faster.
We also tested the state-of-the-art pseudolikelihood

maximization approach, which is faster than the
Boltzmann learning approach but, on the tested data set,
provides results of slightly inferior quality. Interestingly,
the relatively good contact predictions obtained using
pseudolikelihood DCA are not paralleled by correct fre-
quencies in the reconstructed Potts model. Similar results
were obtained decreasing the regularization term usually
employed in pseudolikelihood DCA. This effect is likely
due to the finite number of available sequences. A more
important practical issue is that the optimal threshold
used for contact predictions resulted less transferable
across different families in pseudolikelihood DCA when
compared with Boltzmann learning DCA. This suggests
that choosing a cutoff that can single out true contacts
might be more difficult in this method.
The impact on contact prediction of other sometime

overlooked choices (reweighting and APC correction) has
also been assessed. Our results show that these choices
lead to negligible or minor improvements to all the
methods.
Finally, we show that the alignment procedure used to

prepare the MSA has a significant impact on the accuracy
of the prediction. In particular, the Infernal algorithm, that
is based on a previous prediction of the secondary struc-
ture, performs significantly better than the ClustalW algo-
rithm. Whereas this effect is somewhat expected, we are
not aware of similar assessments done on DCA methods.
Interestingly, the effect of changing the alignment method
is larger than the effect of optimally choosing all the other
parameters, including the choice of using DCA rather than
R-scape or the method used to infer DCA couplings. This
suggests that the quality of the alignment is the issue
that should be mostly addressed in future works in order
to improve structure prediction based on coevolutionary
information. We observe that the couplings obtained
with the present approach might be used to further refine
the multiple sequence alignments.
In conclusion, the direct-coupling analysis method was

assessed on a number of RNA families. We found that, in
spite of the intrinsic approximations, this procedure is
able to reliably predict a number of contacts in RNA mole-
cules with known three-dimensional structure. Among the
tested methods, the Boltzmann learning approach is the
one that allows to simultaneously maximize accuracy and
precision. In perspective, we foresee the possibility to ex-
plicitly use information about the isosteric RNA families
(Leontis et al. 2002; Stombaugh et al. 2009) or include

three-body terms (Schmidt and Hamacher 2017) in order
to further improve the accuracy of the predictions.
Ultimately, we suggest the direct-coupling analysis per-
formed through the Boltzmann learning as the best avail-
able tool to enhance RNA structure prediction for
systems of up to a few hundred nucleotides, taking advan-
tage of only homologous sequences information.

MATERIALS AND METHODS

Two multiple sequence alignment methods were tested, namely
ClustalW (Thompson et al. 1994) and Infernal (Nawrocki and Eddy
2013). Empirical frequencies Fi (σ) and Fij (σ, τ) were computed as
discussed in Supplemental Information. In order to reduce the ef-
fect of possible sampling biases in the MSA we adopt the
reweighting scheme as in (De Leonardis et al. 2015) with sequenc-
es similarity threshold 0.9. However, we did not find significant
difference in test cases where the reweighting scheme was omit-
ted (Supplemental Information, Table 5).
The idea of DCA is to construct a probability distribution in a

parametric form so that the frequencies of nucleotides and co-
occurence of nucleotides corresponding to the model, fi (σ) and
fij (σ, τ) coincide with the frequencies observed in the MSA, Fi
(σ) and Fij (σ, τ) (see Supplemental Methods). The distribution de-
pends parametrically on a coupling matrix J that only contains di-
rect interactions and is free of indirect correlations, hence the
name direct couplings. In the following, we discuss the technical
details associated to the Boltzmann learning procedure intro-
duced here. For a more general introduction to DCA and to the
other methods to perform DCA (mean field and pseudolikeli-
hood) see Supplemental Methods.

Maximum likelihood and Boltzmann learning

Given a set of independent equilibrium configurations {sb}Bb=1 of

themodel such thatP(s) = ∏B
b=1

P(sb), a statistical approach to infer

parameters {h,J } is to let themmaximize the likelihood, that is, the
probability of generating the data set for a given set of parame-
ters (Ekeberg et al. 2013). This can be equivalently done minimiz-
ing the negative log likelihood divided by the effective number of
sequences:

l = − 1
B

∑B
b=1

logP(sb ). (1)

Minimizing l with respect to local fields hi gives

∂l
∂hi (s)

=− 1
B

∑B
b=1

∂ log Z
∂hi (s)

− d(sb
i , s)

( )

= 1
B

∑B
b=1

(fi (s)− d(sb
i , s))

=fi (s)− Fi (s) = 0.

(2)

Similarly, minimizing l with respect to the couplings gives

∂l
∂Jij (s, t)

= fij (s, t)− Fij (s, t) = 0. (3)
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These equations show that the model with the maximum likeli-
hood to reproduce the sequences observed in theMSA is the one
with frequencies identical to those observed in the MSA.

A possible strategy to minimize l is gradient descent, that is an
iterative algorithm in which parameters are adjusted by forcing
them to follow the opposite direction of the function gradient
(Ackley et al. 1987; Sutto et al. 2015; Barrat-Charlaix et al. 2016;
Haldane et al. 2016; Figliuzzi et al. 2018). The value of the param-
eters θ at iteration k + 1 can be obtained from the value of θ at the
iteration k as

ut+1 = ut − ht∇ul(u) = ut − ht (f (u)− F), (4)

where ηt is the learning rate and t is the fictitious time, correspond-
ing to the iteration number. Calculation of the gradient requires
evaluation of an average over all the possible sequences. This av-
erage can be computed with a Metropolis–Hastings algorithm in
sequence space, but might be very expensive due to the large
size of the sequence space. In addition, the average should be re-
computed at every iteration. We here propose to use the instan-
taneous value of δ(σi, σ), where σi is the identity of the nucleotide
at position i in the simulated sequence, as an unbiased estimator
of fi (σ) in order to update the parameters more frequently, result-
ing in a stochastic gradient descent procedure that forces the sys-
tem to sample the posterior distribution. The procedure can be
easily parallelized, so that at each iteration the new set θ is an av-
erage of the updated parameters over all processes. We here
used 20 simultaneous simulations initialized with 20 random se-
quences chosen in the MSA. Once parameters are stably fluctuat-
ing around a given value, their optimal value can be estimated by
taking a time average of θ over a suitable time window (Cesari
et al. 2018). At that point, a new simulation could be performed
using the time-averaged parameters. Such a simulation can be
used to rigorously validate the obtained parameters.

We here choose a learning rate ηt in the class search then con-
verge (Darken and Moody 1990):

ht =
a

1+ t
tS

. (5)

This function is close to α for small t (“search phase”). For t≫ τS
the function decreases as 1/t (“converge phase”). Since it is based
onBoltzmannsamplingof the sequencespace,werefer to thispro-
cedure as Boltzmann learning. The exact algorithm is described in
the Supplemental Information and the employed C code is avail-
able at https://github.com/bussilab/bl-dca. We notice that in the
algorithm implemented here, at variance with others proposed
before (Sutto et al. 2015; Figliuzzi et al. 2018), the Lagrangian
multipliers are evolved every few Monte Carlo iterations using
istantaneous values rather than averages obtained from con-
verged trajectories. In Figliuzzi et al. (2018) a change of variables
of the model parameters was proposed to make the minimization
easier. This idea might be beneficial also in our algorithm.

Validation of frequencies and predicted contacts

The capability of the tested DCA methods to reproduce the em-
pirical frequencies was evaluated as discussed in Supplemental
Methods. All the predicted contacts were validated against avail-
able crystallographic structures by computing the Matthews cor-
relation coefficient (MCC) as discussed in Supplemental

Methods. Particularly critical is the choice of the threshold used
to identify predicted contacts, that is done using a cross-valida-
tion procedure where all the systems except one are used for
training and the performance is evaluated only in the left out sys-
tem (see Supplemental Methods). For R-scape, we used the rec-
ommended threshold �S = 0.05.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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